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I. SCOPE OF STUDY PROGRAM AND PROGRESS

A study of radio frequency interference in GSFC ground

installations has been underway at the Moore School of Electrical

Engineering of the University of Pennsylvania since June 25, 1965.

The purpose of this work was to identify the major sources of radio

interference at the GSFC stations, to analyze the severity of the

interference, and to propose methods of minimization. The output

of the study was to be a document presenting guidelines for interference

minimization suitable for use by equipment designers and system

planners. Such a document has been completed and submitted.

Discussed in the document are: i) mechanisms of generation of unwanted

emissions, 2) receiver susceptibility mechanisms, 3) equipment design

for interference minimization, 4) methods of interference measurement,

and 5) site selection for avoiding areas of concentration of radio

sources.

During the course of this _ork, data on actual interference

encounters at the various ground stations were made available tous.

These data were summarized and presented as function of time of

occurrence, place of occurrence, and type of interference for the

years 1964-1966. A report entitled "Summary of STADANNetwork

Radio Frequency Interference Events" containing the results of the data

analysis was issued early in 1967.

To a large measure the interference encountered at GSFC

satellite tracking and data acquisition stations is a result of the

simultaneous appearance of two (or more) satellites_in the field of

view of the ground station which have equal or nearly equal frequency

- l-



assignments. This _as anticipated in the early stages of the study

and borne out by the interference data. Accordingly, methods of

predicting and of minimizing such interference _ere studied. The

prediction studies resulted in a computer program which uses the

anticipated locations of all the satellites aloft and the electrical

parameters of the satellite transmitters to determine future inter-

ference encounters. In addition a statistical study _as undertaken

which had as its purpose the development of a frequency assignment

plan which minimizes the probability of interference. The results of

the latter two studies are reported in the second interim report on

this contract, Chapter 5, dated 30 April 1966. Since this _ork was_

reported, additional attention _as given to this problem expanding it to

include load assignment as _ell as frequency assignment. Since the

continuation of this work is a major effort a brief statement of the

status of the _ork and the direction it might take in the future is

given in Section II.

While mechanismsof generation of unwanted emissions and

mechanismsof entry into receivers have received muchattention in the

past the information of the effect of interference on the receiver output

is usually found to be insufficient. Wehave therefore given attention

to l) the tracking errors caused by interference in the Minitrack

system, and 2) the behavior of phase locked loops subjected to inter-

ference. The first of these problems _as discussed, in part, in the

second interim report on this contract, Section 3.3.2. Since the

publication of that report the work vas completed and a technical report

- 2-



prepared. This report is included here under Section III, Part i

entitled "Tracking Errors Caused by Interference to the Minitrack

System." The problem of the phase locked loop _as mentioned in

Section 3.3.1 of the second interim report but was not pursued there

in any detail. Since the publication of that report several methods

of anslyzing the interference effect were studied and are presented

here under Section III, Part 2 entitled "A Study of the Phase Locked

Loop with Interference."

-3-



II. STATE OF WORK UNDERWAY AND RECOPFN3_DATIONS FOR CONTINUATION

1. Frequency and Load Assignment

As pointed out above, the problem of optimum frequency

assignment has received some attention; the second interim report,

Section 5.2 contains the details of this work. A method of assignment

was outlined but the detailed procedure, which will require a computer

program, remains to be developed. Furthermore, it appears reasonable

to go a step further and to propose that the overall system be

optimized with a view to maximizing the information transfer between

satellite and ground. The study should provide a basis for

(1) locating new stations;

(2) assigning ground stations to a given satellite for

tracking and/or data collections;

(3) assignment of frequencies.

These decisions should be made subject to a number of constraints,

among which are

(1) existing ground locations;

(2) orbital elements;

(3) transmitter and receiver characteristics (power,

information rate, etc.);

(4) available bands;

(5) storage capabilities of satellites;

(6) satellite priority.

Solution of the problem depends mainly on the choice of a suitable

mathematical model for the total space-ground system.

-4-



The model considered is a probabilistic model. Satellites

are assumed to enter and stay in the region of view of a ground station

according to a probability law. Information is transferred from a

satellite to a ground station when the former is in the region of view

of the latter and there is no interference from other satellites. In

case of interference a satellite, it is assumed, may be ordered to store

infor_tion until another pass at a certain cost, depending on the

amount of information stored and on the storage time. 1 The cost of

the inforn_tion lost depends on (a) the satellite it has been collected

by, and (b) the time at which it is supposed to be transmitted. It

is desired to minimize the average cost, where the average is taken

with respect to time_ satellites and ground stations. The variables

in this problem are the parameters of the joint probability distribution

of the information transferred during successive passes.

2. Continuation of Studies of Interference Effect

Analyses of the effect of interference are often made tractable

by using convenient, but not necessarily realistic, assumptions about

the nature of the interference and the system through which it passes.

It is therefore essential that experiments be carried out to demonstrate

the validity of the analysis. In certain instances the mathematical

model is so formidable that no one cares to undertake analysis; the

only alternative is to use experiment.

Experiments can be carried out directly, or indirectly on

simulated models. The latter methodhas shortcomings too since it does

1 If the total information required to be stored exceeds the storage

capacity information will be lost and a cost is associated with the

loss.



not involve the actual device, but it is a middle ground between pure

analysis and direct experiment.

Webelieve it will be of great value to initiate an

experimental program leading to results of output interference effect

on the various components of the STADAN system. Tracking and measurement

errors in the Minitrack system and the Range and Range-Rate system

ought to be found. Error probabilities and other measures of output

noise should be found for the data aquisition devices. The tracking

errors, acquisition time, and loss of lock in phase-locked loops

should also be found.
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III. TECHNICAL REPORTS

1.0 TRACKING ERRORS CAUSED BY INTERFERENCE TO THE MINITRACK SYSTEM

2.0 A STUDY OF THE PHASE LOCKED LOOP WITH INTERFERENCE



1.0 TRACKINGERRORSCAUSEDBY INTERFERENCETOTHEMINITRACKSYSTEM

1.1 Description of Minitrack S_stem

The Minitrack system, which forms a basic part of the STADAN

network, is used to determine satellite orbits by means of a series of

independent angle measurements that are made at different ground

stat ions.

The Minitrack system basically consists of a radio interferometer

which has two antenna arrays orthogonally aligned along east-west and

north-south baselines. These interfercmeter arrays provide measurements

of the angles @l and ¢2 in Fig. 1-1. The elevation and bearing of the

satellite can then be obtained by means of the following relations :

Tan2e = c°t2 @i + c°t2 @2 (i-i)

Sin2_ = c°t2 _l (1-2)

c°t2 _l + c°t2 @2

The interferometer array obtains a measurement of the angle

@ by measuring the phase delay which results when the wavefront arriving

from the satellite intersects the receiving array at the angle @

(see Fig. 1-2). This phase delay is created due to the time needed

for the wavefront to progress from element x of the array to element y.

If A_' represents the phase delayj then

: _a (1-3)

where 'k' is the wavelength and 'a' represents the "radio path

difference" expressed in wavelengths. From Fig. 1-2 it can be seen that
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COS _ = a a
d nk

Hence_

cos_ =__il (i-4)
2_

Equation (i-4) represents the basic equation from which the angle ¢ can

be computed.

The angular resolution of the interferometer array increases

with the distance 'd' between the elements of the array; the best

resolution is obtained for a separation of many wavelengths. In the

Minitrack system, the so-called "fine" antenna, which has an element

separation distance of n = 46 wavelengths, provides the maximum system

resolution. The maximum phase difference A_' is obtained when _ = 0

and a = d = nk. From (1-3) we see this to be A_' = 2_n. The
max

electrical phase measuring system will determine A_' modulo 2_. That

is

_' _ 2_k+ ¢i k = O, i, 2, ..., n = 46

and the system measures _i _ an angle which is less than 2_ in magnitude.

The corresponding value of _ is from (1-4)

k +_ (i-4a)cos ¢ = _ 2_n

The component k represents the ambiguity arising in the measurement and
n

is resolved through the use of low resolution antennas. Two such

-9-



antenna systems are in use, a "medium" antenna in which n = 4, and a

coarse antenna in which n = 3.5. Hence, for the "medium" antenna

cos @ is given by (from (1-4))

cos ¢ --

Similarly for the "coarse" antenna_

cos ¢ = 7_

Subtracting (1-4c) from (1-4b) gives

(1-4c)

cos $ = (1-5)

It is evident that (A_" - A_ 11_)will decrease monotonically from 180 °

when _ = 0° to 0° when $ = 90 °. Equation (1-5) gives, therefore, an

unambiguous measurement of ¢ and is used to determine the value of

k (eq. (l-4a)) in the "fine" measurement. Since k (n = 46) changes in
n n

units of _ it is essential that the error in the ambiguitydiscrete

resolving measurements be less than this amount if error in the

measurement of k is to be avoided. In the work to follow the view is

taken that the ambiguity channels must not have an error in the

measurement of each of the angles A_" and A_ #I of more than 1°.

Continuous measurements of the three phase shifts A_',

A_", and A_ I_are obtained using analog phase meters. These measurements

are periodically sampled at fixed increments of time and fed into a

digital computer.

- 10-



1.2 Interference Effects

In recent months, a large number of incidents have been

recorded in which unwanted radio signals have caused interference to

the Minitrack system_ thereby destroying the ability of a ground station

to both track a satellite and gather telemetry data from it. This

interference falls into one of two categories: a) co-channel inter-

ference originating from other satellites which are also transmitting

in the 136-138 MHz space research band and which happen to be passing

over the ground station at the same time as the desired satellite and

b) adjacent channel interference originating from aircraft transmitters

which operate in the 118-136 MHz aeronautical mobile band and which

happen to be flying in the vicinity of the ground station. The errors

created in the Minitrack system by these forms of CW interference

(CW) are analyzed in the following section. A further section (1.2.2)

is similarly devoted to the errors caused by broadband interference such

as might be created by modulated signal sources or high-voltage power

lines.

1.2. i CW Interference

Figure i-3 gives a simplified block diagram of the interferometer

system. The following assumptions will be made in order to simplify

the calculations which follow:

i) The IF and post-detection filters have rectangular

pass-band characteristics.

2) The angle measurements are unaffected by noise in

the measuring system.

- ll-



If both the desired and undesired (interfering) signal are

simultaneously present, then the input to the receiver from antenna x

is given by

Vix = AD cos _Dt +A U cos ((Out - _) (l-6a)

where AD = amplitude of wanted signal

AU = amplitude of unwanted signal

_D = frequency of wanted signal

_U = frequency of unwanted signal

= phase lag of the unwanted signal relative to the wanted
signal.

Similarly, the input signal from antenna y is given by

Viy = AD cos (_Dt - _D) + AU cos (_Ut - _U - _) (I- 6b)

where _D = interferometer phase delay for desired signal

_U = interferometer phase delay for undesired signal.

These signals are then converted downto a lower IF frequency

in the two mixers.

For the x channel, the mixer output is:

Vox cos%t cos(%t- (l-7a)

where _D and % are the respective IF frequencies for desired and

undesired signals and (_ is the mixer gain ((_< i).

- 12-



The mixer output in the y channel is shifted in frequency

with respect to the x channel output by _ = 2_(100) rds/sec. Henceo

the y channel output is given by:

V
oy

the IF amplifier.

( ] [ -:_% cos % +%)t- % +_% cosL(%+%)t-Cu-
(l-_)

Both of these signals are now combined and amplified in

If the amplifier gain is G, then the amplifier

output is

If _U is outside the 10KHz bandwidthj of the IF amplifier, then the

undesired component of VIF is eliminated, and there are consequently

no measurement errors. In this case, the input to the detector is

given by

(1-9)

Assuming that the detector is a square law device, then

2
E = kE. . Hence,
O l

Eo = k CZ2G2AD 2 {cos %t + cos [(0 D +eo)t- _D]I 2

1

- 13-



where K - k_2G2

The detector output E is nowfed to the post-detectiono

filter, which is a band-pass filter centered at too' with a bandwidth

bG = i0 Hz. Sucha filter is only able to pass the lowest frequency

componentof Eo; all the other componentsfall well outside the pass-

band of this filter and are consequently rejected.

Hence, the output from the post-detection filter is

v : _2 cos(_ot - CD) (i-Ii)

which contains _D' the unknown phase difference from which the angle

is computed.

Now consider the case in which _U falls within the i0 KHz

IF bandwidth (assume also that (_U + (°o) falls within the bandwidth).

In this case, E. is given by (1-8). The detector output will therefore
l

be :

2
E = kE.
O l = kC_2G2AD 2 Icos g]Dt + cos _D + _o )t - _DI! 2

Ico + [ oo+

As before, the post-detection filter will only pass the

low frequency components. Hence, if eq. (1-12) is expanded and all

frequency components containing _D and_u are eliminated, we are left with:

- 14 -



Vu = KAD2 cos (coot - _D) + KAU2 cos (_ot - _U)

+KADA U ;cos,,. (At-E_) + cos E(A + coo)t- _U- E_-I

(1-13)

where A : (± 0D :_U )

The first two terms in expression (1-13) for V contain only
u

the frequency coo, so that these terms always appear at the output

of the post-detectlon filter. The remaining four terms_ however,

contain signal components with frequencies A_ A + co and i A _co .
O O

Whether or not these components appear at the filter output, depends

on the value of the difference frequency A relative to the filter

bandwidth _ = 2_b.

In Fig. 1-4, these three spectral components are shown for

six different values of A. The six different spectra of Fig. 1-4 will

no, be grouped into four categories and the error in phase difference

will be separately computed for each of the four cases.

Case A

In this particular case_ none of the three spectral components

fall within the filter pass-band. Using Fig. 1-4j this case corresponds

to spectrum Nos. 2, 4, and 6.

Hence_ in case A, the last four terms of V u do not appear,

so that V is defined only by the first and second terms of (1-12); i.e.,
U

VuA =KAD2 Icos (_o t " _D ) +x 2 (COot-_U)I
(i-14)

- 15 -



where X = --

Figure 1-5a represents a phasor diagram in which V is represented byu

two phasors rotating at frequency e . 0A and OCrepresent the desired
O

and undesired components of Vu, while 0B represents the resultant

signal which appears at the filter output. The angle cA represents the

phase error caused by the undesired signal OA. From Fig. 1-5a it is

immediately apparent that

tan(_D + CA ) =

sin _D + x2 sin CU

cos CO + x2 cos Cu

(i-15)

Hence,

tan(¢ D + CA ) =

tan _D + tan CA

I - tan _D tan eA

s_n CD + x2 s_n Cu

cos% +x2cosCu
(1-16)

Solving for tan cA gives

= X2
tan cA sin _' (i-17)

1 + x2 cos¢,

where _' = CU - CD

Equation (1-16) therefore defines the error cA for case A.

Figures i-6 and i-7 show curves of the error cA plotted against

X (in db) for different values of ¢'.

If X is small (case where AD>>Au) , then the resulting error

eA will be small. Consequently, (1-17) reduces to

- 16 -



X 2 sin _' _ X2

cA = tan'l i + X 2 cos ¢' sin ¢' (l-17a)

It was pointed out above that an angular error of 1 ° is to

be viewed as the tolerable maximum in the ambiguity channels. This

large signal-to-noise ratio _) in (1-17) and one for whichimplies a

the approximation used is valid. Furthermore, _' will take on many

different values during a pass so that it would be reasonable to assure

that in the worst case eA should not exceed the tolerable maximum.

Since

X 2
A max

we conclude that the signal-to-interference ratio should be equal to

or greater than 17.6 db to hold CA max to less than 1°.

Case B

This case corresponds to spectrum No. 1 of Fig. 1-4, in

which both the (_o - A) and (_o + A) components are present at the filter

output. The total output is now given by

V

u B
= _ %2 !cos (%t - *D) + x2 cos (%t - _)

(1-18)

Case B is vectorially represented in Fig. l-Sb. The lower left half of

the diagram is the same as that shown in Fig. 1-Sa and corresponds to

the first two terms of (1-18). The upper right half of the diagram represents

- 17-



the two additional components; phasor BF rotates clockwise with a

frequency A, while phasor BDrotates anticlockwise with the same

frequency. Since the magnitudes of BFand HDare the same, the

resultant BE does not rotate but points continuously in the same

$I + _2 _' with respect to the
direction; that is at an angle 2 = _ + 2

horizontal phase reference. Phasor 0E represents the combined output

signal and eB(t) represents the resulting phase error for case B. As

phasors BD and BF rotate about B, the point E moves along the line

BEG and passes through B (at the two extremities, the point E is at a

distance of 2X on either side of B). The error eB(t ) therefore changes

periodically with time. An expression for cB(t) will now be obtained.

From Fig. l-5b, it can be seen that

tan _D + tan ¢B
tan[-_D_ + _B (t) = i - tan _D tan _B

sin _D + x2 sin CU + X(sin _l + sin $2)

oos + x2oos +x(cos¢1+ cos$2)
(l-Z9)

where

$i (t) : (_ - ¢D + At)

$2(t) : (_ + CU - At)

Evaluating tan _B(t) gives

X 2 sin ¢' + 2X sin (_ + 2_ _ _D ) cos (At - -@)
2 _(1-20)

tan CB(t) = 1 + X 2 cos _' + 2X cos (_3 + 2_ - CD ) cos (At - _)

- 18 -



where

extremities, i.e., either when (At - _) = O, or _.

The maximum error is obtained when E is at one of its

Hence, the maximum

error is given by

tan" i
X2 sin _' ± 2X sin (_ + _'"2 _D )

1 + x2 cos¢,• _ cos (_+_2 - _D)
(l-20a)

where the maximum is the larger of the two values taken on by eB(t).

It can be anticipated that X << 1 and that

eB(t) " _isin (_ + -
2

(1-21)

Furthermore, as the satellite progresses through its orbit, the angle

in (1-21) will very likely pass through -_/2 or _/2. Thus

eB(t)] & 2X
max

If the latter is to be less than 1° then the signal-to-interference

ratio, _, has to be 41.2 db.

This estimate of the signal-to-interference ratio takes the

pessimistic view that everything will be at its worst. The measurements

are repeated every second and successive measurements are averaged in

a computer so that it is unlikely that each sample entering into the

average will be taken exactly when E in the Fig. 1-5b is at its

extremity. It would be more appropriate to treat the angle (At - _)

in (1-20) as a random variable uniformly distributed in 2_ and to derive
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a suitable statistical conclusion. Again, for X << I, we write in

place of (1-20)

cB(t ) n 2_X sin (_ + _'2 - _D ) cos (At - _) (1-22)

Written in this manner, the time average of CB(t) over a cycle is

zero. This is only approximately correct; it can be shown that the

time average of (1-20) is not zero (it differs, also, from CA defined

in (1-17a) and shown in Fig. 1-5-b).

Now, the final computed output angle is obtained by using

145 "fine channel" measurements and 29 "ambiguity channel" measurements

taken over a 29-second period. We have argued that 1° error in the

ambiguity channel establishes the tolerable input interference level.

Therefore, we compute the angular error for the ambiguity channel

taking into account the averaging over 29 successive measurements

each given by (1-22).

The error criterion is here treated as follows. Each

measurement of eB(t ) will depend on (At - 3) which we are treating as

a uniform random variable. The variance of eb(t) is therefore frcm (1-22)

2 =X 2 sin 2 (_ +_' _D ) (1-23)
_¢b 2 -

Now, we view the n = 29 successive measurements as independent samples

which are averaged to give eb. The variance of this latter quantity is

2 x2 2
=- sin (_ + - (1-24)

eb n 2
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Assuming we are at a part of the orbit where _ + 7"-2 _D = k 2' k odd,

the variance _ill be maximum. We write it then

r'

x (l-24_)
e b max

Finally_ we let the permissible angular error of i°, equal

2 d__ . Since _B will be approximately normally distributed this
¢ max

1°B_that there will be about 5% probability that cB > Thus,means

x 29(lo)2 " --i =_-
_ b max

and

X " - 26.7 db

For this case_ then, it is advisable to have a signal-to-noise ratio

of about 9 db greater than in the previous case. It should be recalled

that the case treated is one in _hich the desired and undesired signal

frequencies are separated by an amount less than the post-detection

filter bandw_ th of about i0 Hz.

Case C

This case corresponds to spectrum No. 3 of Fig. 1-4 in

which the signal components of frequency A are present at the filter

output. The total output for this case is therefore given by

V
U
c

= K %2 I cos (0Uot - %) + X 2 cos (d_ot - _JU)

+xcos (At_ _) +Xcos (_t- _'- _)i (1-25)
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The phasor diagram for Case C is shown in Fig. i-5c. In

this case_ BD and ]_F are both rotating in the same direction at a

frequency (A - _o). The resultant BE therefore also rotates about B

at the same frequency. Consequently, the error ¢ (t) varies periodically
C

with ¢^ as its mean value. An expression for ¢ (t) can be obtained in
/< C

the same way as in the last case. The result is

tan ¢ (t)
C

X 2 sin _' - 2X cos _' sin • (4 - _Oo)t - _ - _' - _D2 2

1 + X2 cos _' + 2X cos _'2 cos. (4 - _o)t - _ - 2_' - _D

The maximum error is obtained when BE is normal to 0B for the

situation shown in Fig. I-5c

_l (t) + _'2 = cA + __ (1-27)

Substituting for @l(t) and solving for "t" gives

+_' ¢A

t = A - cu (1- 28)
o

Substituting (1-28) into (126) gives the maximum error for Case C:

X 2 sin _' + 2X cos _'2 sin (_D + CA + 5 )

tan @c(t) = _ (i- 29)
i + x2 cos¢, +2xcos cos(¢D+ cA+5)

Conclusions similar to those obtained in Case h can be drawn

for Case C. For X << I (i_9) can be approximated by

@ (t) & 2X COS 2_ sin (_D + CA + 2 )
c
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The maximum value of the magnitude of _ (t) is
C

max
41.2 db.

(t)]
max

" 2X

is to be limited to i° the value of X is, as in Case B,

Returning to (1-26), for X << i

(t) "- - 2X cos _' sin ((A - _ )t - _ _' _ )_
_c 2 o " 2 - D

As in Case B, treating the angle in the braces as a random variable

uniformly distributed in 2_, the maximum value of the variance of the

average of n samples of ec(t) is

x
m_x

] 1°The signal-to-noise ratio required to keep 2 m < is 26.7 db.

gC

Case D

This final case corresponds to Spectrum No. 5 of Fig. i-4,

in which the component of frequency (A - _ ) is present at the filter
O

output. The total output is now given by

+xoos +*D-o (l-:..to)

The phasor diagram for Case D is shown in Fig. l-5d. Phasor

BE rotates about B at a frequency (A - 2 _ ) and the resulting error is
O

now ¢D(t) which again varies periodically about _A as its mean value.
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An expression for cD(t) can again be obtained as before:

tan cD(t) =
)t+X2 sin ¢ X sin _D X sin [(A 2_ °

+x2 [ )_+_D- _cos _' +x cos _D +x cos (_- _o v_

(1-31)

The maximum error is again obtained when BE is normal to

0B. For the situation shown in Fig. l-5d this implies

or when

_(t)= _A +

t : _-_j
A -

0

Case D:

Substituting (1-32) in (1-31) gives the maximum error for

tan cD(t) =

X 2 sin _' - X sin _D +X sin (_A + _ - _D )

1+x2 _ _D)cos_'+ x _os_D+ X cos(_A+_
(i-33)

Once again for X << i

_s_D(t ) n: _D ) - sin CD ""= X in (CA + _ "

Recognizing that eA <<

@'D(t) "- X [cos _D- sin _D]

The maximnmvalue here is
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E_d(t)]max--_ X

To hold I_d(t)_ to 10 requires that X be about 38 d.b.
max

x << 1 with (1-31)

Now using

In this case averaging n = 29 successive samples will reduce the effect

of the second sine term in the braces but not the first. We take the

vie_ then that the error in this case is

_o(t)- x sin_D

Atthepointintheorbitwhere_D: (2k+ i)_/2,k aninteger,

_D(t) & X

and the required signal-to-noise ratio to hold _D(t) to within i° is

about 35 db.

1.2.2 Broadband Interference

A fe_ cases have been recorded in _hich broadband interference

from unwanted information bearing signal sources or high voltage power

lines has temporarily disrupted the operation of the Minitrack system.

It is therefore worth analyzing the effect of broadband noise on the

system.

Let the broadband noise be given by the real part of:
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j [%t + e(t) )
A_(t) e ] (1-34)

Then, as before, the signal arriving from antenna X is given by the

real part of

ADeJ_Dt j coDt + 8(t)tVi× = + Au(t)e _ (I-35)

and the signal arriving from antenna Y is given by the real part of:

j%(t - _D)
Viy : ADe Tu)eJ_D(t - TU) je(t - T )+ Au(t - e U (i-35a)

where TD and TU represent the time delays necessary for the desired

and undesired waves to travel from antenna X to antenna Y (time required

to cover distance "a" in Fig. 1-2).

Similarly, the two outputs from the mixer are given by the

real parts of

jg_Dt j[_D t + 8(t)!

Vox(t ) : O_ ADe + O_ Au(t)e (i-36)

J(_D + (°o)(t - TD)

V (t) = O_ ADeoy

j(% +%)(t - je(t u)
+ (%Au(t- Tu)e TU)e - T (i- 36a)

In practice, the time delay TU does not exceed 0.5 _sec, so that the

change of A(t) and @(t) during the time TU may be neglected. Hence,
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and

Au(t - mU) _ Au(t)

e(t- _u)_ e(t)

The two output signals are combined and amplified in the IF

amplifier.

by

If the time response of the IF amplifier circuit is given

Gh(t)ejmDt

then the amplifier output is given by the real part of

where

+_ j%(t - t,)
El(t) = (_ G f Vo(t') h(t - t') e dt' (i-37)

3
m CO

Vo(t' ) = Vox(t') + Voy(t')

Hence,

I% + _ )h(t
E i(t) = (% G ej%t + ,i %(t')e j0(t' - t')dt' + %e jco°(t - TD)

CO

Jcoo(t - T U) + CO )
+ e J" %(t')e jO(t')e -jco°(t - t')h(t . t')dt

CO i

(l- 38)

The two integrals in (1-38) differ only by the term

-jcoo(t - t')
e Since co is very small compared with the IF bandwidth B_

o

this term is approximately unity, so that the two integrals are identical.
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Let these integrals be represented by l(t). Then the amplifier output

is given by the real part of

eJODtIAD! J(_ot - _D )) I J(eot " _U) 1El(t) _ G i + e _+ l(t)" i + e

(i-39)

where

_D : (_o + _D)TD and _U = (too + _D)_u

The output from the detector is given by

_o(t): k _E.(t)__ : k _,._E._ (1-40)

Substitute (1-39) into (1-40) and simplify. Passing the detector output

through the post-detection filter will eliminate all components in

OD" Hence_ there remains

Eo(t) = K AD2 i'l + coS(_ot - _D )

where

+K_I(t)! i + coS(_ot- _u)'

+ KA D Re II(t)]]•coS(_ot - %)+ coS(_ot - _U)+ i + cos _'_

+K AD Im iI(t)J sin(@ot - _D)- sin(@ot- _U)+ sin _'i

(i-4_)

2 =% %

The first term in (l-Al) conZains the desired signal

component plus adc component which will be rejected in the post-

detection filter. The ren_ining terms in (1-41) are interference

generated. Because the post-detection filter has a very narrow
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bandwidth muchof the interference output is negligible with the

exception of a portion of the term II2(t)l cos (_ot - _u). If

I(t) is white Gaussian noise in a limited band with total power PI'

then II2(t) has a power spectrum which is an impulse function at

zero frequency and a triangular function extending from zero frequency

to twice the band of I(t). The dispersed power in the triangular

function contributes little in the narrow post-detection filter. The
1

impulse function is a concentration of po_er (it contains _ the power

in I2(t)) and makes the major contribution. Wecan therefore say that

at the post-detection filter Output the major noise contribution is

given by 12(t)! cos (O_ot- Cu) where 12(t) I is the average value of

the square of the noise output of the IF amplifier and is given by

2PI •

We can also argue that the last two terms in (1-41), which

are continuous spectrum components, makecontributions at the post-

detection filter output of the sameorder as does the triangular

componentof 12(t)I and are also negligible. Furthermore, the

contribution to the angular error resulting from all the continuous

spectrum componentsin (1-41) is time-varying and will be reduced in

the computer processing. It will be recalled that the computer averages

29 successive measurementsin the ambiguity channel thus reducing

the rms value of the time varying componentsby an additional factor

of _2/29. Hence, the final filter output is approximately

 o(t) = K%2  :cos(%t - x2 cos t - (i-42)
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whe re

X2 = 2PI

%2

The expression for Eo(t ) now agrees with (1.14) for the CW interference

case. Hence, the expression obtained for the error created by the

noise will be the same as that obtained in Case A of the CW interference

analysis, i.e.,

x2 ¢,
tan _ = sin (1-43)

i + X 2 cos _'

Hence, the curves of Figs. 1-6 and 1- 7 are also applicable

to the case of broadband noise. We conclude as we did in the discussion

following (l-17a) that to have an error of less than i° im the ambiguity

channels necessitates a signal-to-noise ratio at the IF amplifier

output of 17.6 db or more.

1.3 Conclusions

The foregoing study of the effects of CW and wideband inter-

ference to the Minitrack system has resulted in a number of expressions

giving the angular measurement error as a function of signal-to-

interference ratio and other pertinent quantities. Several significantly

different cases were distinguished for CW interference. The most

common case (Case A) is one in which the interference will appear in

the IF amplifier band but is neither too close to the desired signal

frequency (that is, it is separated from the desired signal by more

than the post-detection filter bandwidth), nor do its cross products

with the desired signal appear in the post-detection filter. The
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other cases arise when one of these stipulations do not hold. Three

such distinguishable situations (CasesB, C, D) can arise, but they

are much less likely to occur than CaseA.

The view is taken in this work that the Minitrack system

has a threshold determined by the ambiguity resolving portion of the

system. A safe condition was taken to be that condition wherein the

electrical angles measured in the ambiguity channels is not in error

by more than i °. On this basis it wasconcluded that the required

signal-to-noise ratio for CWinterference in CaseA and for broadband

interference is 17.6 db. For the other three CWcases, the signal-to-

interference ratio required maybe as high as 35 db.
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2.0 A STUDY OF THE PHASE LOCKED LOOP WITH INTERFERENCE

2. i Introduction

The phase locked loop is an important element in modern

communication systems, and has been given much study in the past

ten years. Mnch of this work has been devoted to the acquisition

and tracking properties in the presence of noise. Very little work

has been devoted to the analysis of the phase locked loop in the

presence of interference from other communication signal sources.

The behavior of the phase locked loop with interference

present is an important practical matter. In many actual situations,

interference has caused the loop to lose track, track the interfering

signal, or fluctuate in such a manner as to obscure or completely

destroy the information being transmitted.

A study of the operation of the phase locked loop in the

presence of interference should attempt to answer the questions;

under what conditions will the interference disrupt the tracking

procedure to such a degree as to cause a loss of information, and

what can be done to reduce the effect of the interference.

The answer to the first question is obscured by the fact that

different amounts of disturbance can be tolerated depending on the

specific use of the phase locked loop. It is the aim of this paper

to develop techniques of analysis for use with the phase locked loop

in the presence of interference. Expressions for the output phase

fluctuations caused by an interfering carrier and the effect of the

interfering carrier on pull-in range and acquisition time are sought.
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The following three approaches are used: an infinite series solution

to the linearized loop equatian, a quasi stationary approach, and a

phase plane approach.

2.2 The Phase Locked Loop with Interference--An Infinite Series Approach

The differential equation for the phase locked loop (PLL)

preceded by a limiter for the case of an unmodulated carrier plus an

unmodulated interference at the input yields an unwieldy nonlinear

differential equation. But by assuming the effect of the interference

to be s_ll a series solution for the output phase can be obtained

and from this, insight into the loop operation with interference present

can be obtained. The model for the phase locked loop is given in

Fig. 2-1.

The effect of the limiter is easily seen by rewriting the

signal at point 1.

cos et +a cos (_ + 6)t =

.....it )• : 2 a sin 6t (2-i)I + a + 2a cos 6t cos + tan-i i + a cos 6t

The limiter removes the amplitude variations.

the signal at point 2 is

Therefore,

cos _= cos (_t + tan -I a sin 6t _ (2-2)
- i + k cos 6t"

The voltage at point 3 is filtered and passed through the

voltage controlled oscillator (VCO) to give the voltage at point 4
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which, using operational notation, is

t + _ sin _)-2 sin (_o S

But the product of the voltages at points 2 and 4 gives the voltage

at point 3

cos e (-2 sin(_ot + _ sin ¢)) : sin ¢S
(2- 3)

This leads to

sin(e- _ t - KF(S) sin ¢) = sin ¢
o S

where the double frequency term is taken to be outside the bandwidth

of the system. Equating the angles we get

S_ + KF(S) sin ¢ : Se- S _ t
O

Substituting for _ from (2-2) and defining

-i a sin 8t
@ = tan

1 + a cos 6t

we obtain

S¢ + KF(S) sin _ = _ -_o + e (2-5)

- 42 -



1
e can be expanded in an infinite series to give

CO

8 6 Z (-l)n + i n= a cos nSt (a < i)

n=l

(2-6)

term.

Assume _ has the form of a constant term plus a fluctuating

: _o + _(t) (2-7)

Then using (2- 5) and (2- 6)

$4 + KF(S) (sin ¢o cos 4 + cos ¢o sin 4) =

Co

6 Z (-1)n + 1 an cos n6t +co - C0o (2-8)

n=l

Assuming the fluctuations about the dc value of the phase error are

small then

4 + KF(S) (sin ¢o + cos _o 4) =

co

6 Z (-1)n + 1 na cos n6t +co - co
O

1

(2-9)

For the case of the first-order loop F(S) = 1.

Assuming an infinite series for the output phase

fluctuations
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oo

=F, _ cos(n_t+o%)
n=l

(2- i0)

and substituting into the differential equation yields (see Appendix A

for details)

and

A

n

= tan-i -n6 (2- ii)

n K cos @o

(_l)n + 1 6 an
1 wl

_/i+ n6 _,2K cos ¢o K cos ¢o'

where

O,

¢0 :sin ( K J
'\ /

(2- :m)

¢o is the solution for no interference present. The

complete solution for ¢ is

co

,--, ; (_l)n + 1 a n
: _o+ 6)'l \,_ cos_o)2+ (_6)2

cos (n6t + tan -I

co

(_l)n + 1 an

2
= ¢o + 6 L (n6)2 +K 2 cos ¢o

n--1

(K cos _o cos n6t

+ n6 sin n6t) (2-13)

Note that the output phase for the first order loop with low levels of

interference is a periodic fluctuation of zero average value about the

- 44 -
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phase error that would be present if there were no interference. Also,

note that, if the assumption that the fluctuations due to the interference

are small, were not made, the average effect of the interference would

not be expected to be zero since the nonlinear sine function would

weight positive and negative fluctuations unevenly.

To examine the limiting behavior for very large 6 the

following approximation is made

i i
" (2- 14)

(n6)2 + K 2 c°s 2 _o (n8)2

for

62 >> (Kco__o)2

which upon substitution into the solution for _ (eq.(2- 13) and by

noting that

n

8 = L (-i) n + I a-- sin n6t (2- 15)
n

Z a n
e dt = - (_-i.n

+ 1
cos n6t

n26

yields

" _o + e - K cos _o J" e dt
(82 >> K2 2cos ¢o ) (2- 16)

To compare the fluctuations due to the interference before and after

the phase lock loop, examine
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_ - _o] peak
e

peak

= 6 i) n + i an

 in;5 <-+ (_cos¢o)a
cos [n6t + tan -I

r

K cos _o_]_peak

if a << i, the first term dominates

! " _o _peak _ 6',, i2 + (K cos

Taking only the first term in (2-15) for e,

[e] peak = a

[_ - _o]
peak

[e]pe_k

6 1

: : _ I K cO s _O

_ I) _ + ( K _ O_ ¢0 ) _ " V i + ( .... 6 )

(2-17)

Note that the phase locked loop always decreases the peak-to-peak

fluctuations when a << i. Also note that as 6 gets large the effective-

ness of the PLL dimishes as far as reducing the peak-to-peak fluctuations

of the interference.

To compare the mean square fluctuation caused by the inter-

ference before and after the PLL, compute
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8 2 a2n

+ tan'l K '_o dt = 2

I (K cos _o )2 _ (n6)2

(2- z8)

If a << i_ the first term dominates

2__ 62 a2

1 ]'8 ¢2(t 2
-- )dt- 2

2_8 o (K cos_o)2 + 6
(2- zg)

The mean square fluctuation before entering the phase locked loop is

2_ 2_
m m

= (_l)n + l an
i 8 02 dt _ 0 L i -_- sin n6

oo

2n

=_i 27
(2-20)

If a << i, the first term dominates

2_

6 j"6 e2 a22"_ dt = _-
0

(2-21)

Therefore, the ratio is

2n
a

L-- 2

mean square ,Itl = imean square e t

62

(K oos _o)2 + (n6)2
Co

2n
a

i

(2- 22 )
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This ratio is less than one regardless of the values of a

and 6. That is, the PLLalways reduces the mean square phase

fluctuation caused by the interference and this effect diminishes for

larger 5. For a << 1

mean square @It Imean square e t =

52

_2+ (_ cos ¢o)2

Let us return to the differential equation (2-4) to

examine the behavior of the second order loop with interference.

s_ + _(s) sin_ = se- (2-4)
O

For the second order loop let

T

r(s) = 1 +#

which when substituted into (2-4) and the equation is simplified yields

$2¢ +KS sin ¢ + KT sin _ = S2 e- S
O

(2-24)

Eliminating the operational notation gives

+ K_ cos _ + Km sin _ = e (2-25)

Letting e = et + e finally yields

"_ +K_ cos _ + KI" sin _ = e (2-26)

If we precede as before and let _(t) : _o + _(t), expand

sin ¢ and cos _ and then let cos _(t) "-1 and sin _(t) "- @(t), we
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find we cannot solve the equations. If, however, we make the cruder

approximation that cos _ "- i and sin _ " _, we can precede to solve

the equation. This approximation is not as crude as it appears since,

when the second order loop is in phase lock, the phase error is zero.

Therefore, the approximation is that the fluctuations about the phase

error that exists when no interference is present, are small. This

is the same approximation we made for the first order loop.

Therefore, we make the approximation cos _ - 1 and

sin _ - _, then equation 2-26 becomes

+ + : e (2-27)

As before_ we represent the input phas% e_ by an infinite

series, equation 2.15. Differentiating twice yields_

n=l

(-i) n n an sin n6t (2-28)

We assume a solution of the form

co

= _o + L An sin (n6t + _)

n=l

(2-29)

Substituting (2-29) into (2-27) and solving for A and _ yields
n n

(see Appendix B for details)

_o = 0
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(_ = tan-i En8

n n282 - KT

A
n

= (_l)n + i n82a
n

The output phase is then

co

n=l

+ i n62 an

sin _6t + tan -I n262 - K

co

n=l

(_lln + 1 n62 an isi n n6t(n262 - Er) + cos nSt(Kn6)I (2-31)

(nK6) 2 + (n262 - K'r)2

For the second order PLL, the output phase is again a

periodic fluctuation of zero average value about the value of the

phase error that would be present if there were no interference.

In the case of the second order loop we might still

expect the average value of the output phase to be zero even if we

had not approximated cos _ & 1 and sin _ _ _, since for the second

order loop the steady state phase error with no interference present_

o' is zero.

If 62 >> K_ and 62 >> K2, then

A "- (-l)n + 1 an
n n
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and

n

= tan-i Kn6

262n -KT

. tan-1 Ku8 _ tan-l(0) = 0

n28 2

then

oo

(_lln + 1 an
_: Z n

n=l

sin n6t = e

that is

for 62 >> KT

62 >> K

Returning for a moment to the solution to the first order

loop, equation (2-13), we have

co

(_l)n + i an

: ¢o + 6 21 (n6)2 + K 2 cos2 _o
K cos cos nSt + n6 sin n6t I¢o

(2-13)

If 62 >> K

oo

+ _ (-1) n +lan
- _o Z n sin n6t

1

¢o + e (2- 33)

We see that for 62 >> K, the phase fluctuations of the first

order loop and the second order loop are identical. This is an

important result which will be arrived at from another viewpoint later.
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To examine the ratio _peak : epeak for the second order loop,

we assumea << 1. Then the first term of the series solutions (2-31)

and (2-15) will dominate. Then

62 a

_pea..___._: [(K6)2+ (_2_ ,:_)2] 1/2 82
epeak a K6)2 + (62 _ KT)2

(2-34)

If 6 is very large this ratio approaches one. If 6 is very

small the r_tio approaches zero.

This ratio is greater than one if (2_ - K)62 > K_ 2.

If K > 2T this will never happen.

The mean square output phase fluctuation is

2_

j 17 n2 a2nz _ ¢2(t)at. = _ )2 . )20 (nK8 + (n262 KT
8 1

(2-35)

Forming the ratio mean square _: mean square 8 we have

mean square _ =
mean square e

2 64 2nco n a

(r_6) 2 2
I + (n262 - K_)2

GO

2n

l 2n2

(2- 36 )

if a << i the first terms dominate and we have

mean square _ = 84

mean square e _K6) 2 + (62 - KT)2]

(2- 37)
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For large 8 this ratio approaches one and for small 8 this

ratio approaches zero.

if

As for (2-34) this ratio is greater than one,

(2T - K)8 2 _ K_ 2

For the second order loop it has been shown that for large

6 the output phase fluctuations are approximately the input phase

fluctuations. It has also been shown that for large 6 the seconi

order loop output is the same as the first order loop output when

carrier plus interference are present at the input. It _as also

demonstrated that if K < 2T, it is possible that the peak-to-peak

output phase fluctuations are greater than the input peak-to-peak phase

fluctuations in the second order loop. Similarly, the mean square phase

fluctuations of the output can be greater than those of the input in

the second order loop. This contrasts with the case for the first order

loop where the peak-to-peak and mean square output phase fluctuations

are al_ys less than those of the input.
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2.3 The Effect of Interference on the Acquisition Time and Pull-in

Range of the Phase Locked Loop--A Quasi-Stationarz Approac h

There have been many studies completed considering the

acquisition behavior of phase locked loops with no interference

present. In this section one of these approaches will be briefly

reviewed. Then several cases of acquisition in the presence of

interference will be reduced to the case of acquisition without

interference and the effects of the interference pointed out.

The approach we are going to follow is that of Meer 2.

Meer's approach is to demonstrate that for large frequency errors the

second order loop can be considered as a first order loop with a

slowly varying bias. With this approxin_%tion an expression for

acquisition time is developed from which he deduces the pull-in range.

Briefly, his approach is as follows:

The first order loop equation is

S_ +mK sin _ = A (2-38)

where A = _ - _ is the initial frequency error.
o

K is the loop gain

lim F(S) is the high frequency (}IF) gain of the filter
m = S__o

H = mK is the HF loop gain

A_
Po = -H- is the normalized initial frequency error.

For the first order loops (2-38) has two solutions. For

IA_I < H
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_(t) :
2 tan -I in _s " tan tanh cos + cos _s tan

(2- 39)

where _s is the steady state error

_s _ sin-i ---_H = sin-i Po

_(t) was plotted for several values of initial phase, _o' and it was

lO
found that _(t) settles to _s in less than _-- sec in most cases.

Outside the synchronization range, A_ > H, the solution is

'_A°_)2- _ t=2 _an-l_(_72__[_ II_ (2-40)

0

From this a plot of sin _(t) is made and is found to be periodic, with

period

_ 2_ (2-4m)
: V( )2

From equation (2-38) the average value of sin _ over a period of length,

To, is

T
0

sin _ = -H--A_ _)2 1=_ Po " VPo 2 - I (2-42)

where

- 55 -



T
T o
0

i

o 0

Next the second order loop is considered. It is given by

1 +TIS i- I_2

I+m.S 1
1

(2-43)

where

A T1 _ A i- I_2

= _ a2(s)=T. _ i +T.S
1 1

is the high frequency gain and _2(S) is a low pass filter.

Using this expression for the second order loop filter the

second order loop differential equatica is

N

S_ + H2 sin _ = A_o - G2(S ) K 2 sin (2-44)

where H2 = IV_2K2

If we define

then (2-44) becomes

coi(t ) - _o - G2(S ) K 2 sin

S_ + H 2 sin _ =d_ i(t)

Next Meer argues that for large initial Zko the filter

capacitor is a short. Recall that the second order loop filter is

given by Fig. 2-2_ where
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= 1 + mcs
1 +RCS

lim

S-_

a2(o) = 1

If the filter capacitor is a short, then the phase detector

output is that of a first order loop. Therefore, from the earlier

analysis of the first order loop, there is initially a low frequency

component out of the phase detector given by (2-42) with period given

by (2-41). Along with this low frequency component are components at

2_

the fundamental and harmonics of the beat frequency, _-- . But only the
O

low frequency component gets through the filter G2(S), ergo,

T
0

G2(S) sin _(t) " G2(S ) sin _(t) (2-46)

T
O

Cbi(t ) "- A_O - K_2 _2(S) sin _(t) (2-47)

Meer then proceeds to demonstrate that as long as

1.8 Bn < co. where B is the noise bandwidth co.(t) is a slowly varyingm n m

term and under these conditions, the second order loop can be treated

as a first order loop with a slowly changing bias.

With this point established

i S¢ + H2 sin _ = _0i(t)

is treated as a first order loop equation with an initial frequency
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error _. (t). Then at any instant the low frequency component of the
l

phase detector output is

T _i __-_i_ - i (2-48)sin _ = -_- -

where T is

-@-= coi

Substituting (2-48) into (2-45) yields

l : _ -"_2(s)_: - T - 1

_.(t)l

if wedefine p(t)=_ and p(O) =%=_--

for G2(S ) and separate variables, we get_

(2-5o)

and substitute

d.At dp (2-5l)
"l'.

l I-M
( p2_ 1 - p)

M

Integration of (2-51) between the limits Po and the

mini[_m value of p for which the quasi-static condition is satisfied

gives a part of the total acquisition time.

This portion is called the frequency acquisition time, tf.

The remaining time to acquisition is called the phase acquisition time

t_. The total acquisition time, ta, is then

t a = t_ + tf
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Meer then justifies using p = 1 as the upper limit of integration

lO

for eq. (2-51) and accepting t_ _<-_- as a bound for t_.

The solution of eq. 51) from p = Po to p = 1 is given

by Richman 3 and is presented graphically by Meet.

The pull-in limit, the value of P for which the acquisition

time goes to infinity, is obtained by finding the real zeroes of the

denominator of eq. (2-51) which yields

A_p = H \IH - 1

which depends only on the dc gain K and the high frequency gain H.

At this point, we have presented the results of Meer's

investigation of the acquisition behavior of phase locked loops with

no interference present. We have found the acquisition time to be a

function of initial frequency error_ dc loop gain and the HF gain of

the circuit and we have found the pull-in range as a funct ion of the

dc loop gain and the HF gain of the circuit. In light of these

results, we proceed to examine the behavior of the phase locked loop

in the presence of interference.

Returning to the model of the PLL it is of interest to

examine the spectrum of the signal after it has passed through the

limiter but before it has entered the feedback loop. The model for

the loop is shown in Fig. 2-3. For simplicity we assume that

initially the frequency out of the VC0 is zero. Therefore, A_

represents the initial frequency deviation
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cos _t + a cos (A_ + 6)t = A(t) cos (A_t + e(t))

a<l

where

and

-i a sin 6t
0 = tan

1 + a cos 6t

k(t) = + a2 + 2a cos 8t

The amplitude variations are lost in the limiter. The

frequency spectrum at the output of the ideal limiter can be found

by expanding cos EAst + e(t)3 •

co

cos [_t + O(t)_ = _ Bn(a ) cos (A_- n6)t (2-54)

n=-co

Reference 4 contains ten place tables of Bn(a ) computed by J. Granlund.

The output spectrum of the limiter contains a component at

the desired signal frequency, the interfering signal frequency and

harmonics of the difference frequency.

Case 1

First let us consider the case in which

cos A_t + a cos (A_ +6)t

is present at the input but that the bandwidth of the limiter is such

as to discard all but the component at the desired frequency.
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Referring to eq. (2- 55) it is easily seen that this will

be the case when (see Fig. 2-4)

- nSl> (2-55)

for all integers n _ 0

The effect of the interference is that the amplitude of

the desired frequency component is reduced by a factor Bo(a ) over what

it would be if there was no interference present. This effect can be

absorbed into the loop gain and the problem considered to be that of

acquisition with no interference present. The inequality (2-55) will

always be satisfied if it is satisfied for n = 1.

J6 -_j>B

which is always satisfied when

6 (2-56)

Referring to equation (2-52) we have, vhen 6 > 2B

A_p = H H - i (2-57)

To find the effect on acquisition time reference to Richman's

or Meer's results_ using the effective gain Bo(a ) K, should be made.

Bo(a ) as a function of a is plotted in Fig. 2-5 .
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Case 2

Acquisition in the Presence of Interference with a WideBand Limiter

Again cos A_t + a cos (A_ + 8)t is present at the input

but now all the spectral components will be present after the

limiter.

cos (A_t + O(t)) = _, Bn(a )

where

0 = tan -1

cos (_ - nS)t

a sin 6t

i + a cos 8t

We may think of this signal in two ways: as a signal with spectral

components of magnitude Bn(a ) corresponding to a frequency 20 - n6

for all integers n; or we may take the composite signal viewpoint,

that is, we may think of the signal as a single line, of constant

amplitude moving about its average value A_ in the frequency domain.

Taking the composite signal viewpoint we note that the

amplitude of cos (20t + e(t)), the limiter output has a constant

value which has the same magnitude that a sinusoid of constant frequency

would have at the limiter output.

The first o_der loop equation with cos (20t + e(t)) at

the in,at is

d a sin 6t
S_ + _ K sin _ = S(a_t + e(t)) = an + _ tan "l 1 + a cos 8t

For the first order loop with constant frequency input we had

(2-58)
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T

o 2sin ¢ =%-_ )2 l = Po " - 1

or

• i 9°4
= _o if 4 >> 1

T
m O

H
sin _ & 2A_

since

Thus when

Averaging equation (2-58) over T
O
_hen A_ << 6 also yields

T
O

1

sin ¢ - 2_ = _ (2-60)

= 2_ (e-6l)
To

e_ (2-6e)
Am << 6 , TO >> _- = T8

and

1 o e(t) dt = 1 L 8D 1 _rm ] @(t) dt

T 6

But the first integral is exactly zero and the second integral

is very nearly zero for T >> T . Thus eq. (2-60) is seen to be true.
o 6

Therefore, the dc voltage on the VCO in the asynchronous mode

for the first order loop with time varying frequency is determined by

Aco which is the average value of the input frequency.
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Now following Meer's argument, for large values of frequency

error the second order loop acts like a first order loop. Thus the

dc voltage on the VCO is,

H

2--_

and since the loop filtmr is very narrow band

G2(S ) sin _ = G2(S ) sin _ (2-64)

and the argument proceeds as before in eqs. (2-47) through (2-52).

Since the composite signal amplitude is the same as the

limiter output amplitude that a single sine _ve of constant frequency

would have, and since for large frequency errors the loop trys to

acquire the average frequency, the pull-in limit is

1 (2-65)

where in this case AcD represents the maximum average frequency tl_t
P

the loop will begin to acquire. The acquisition time is the same as

if no interference were present.

The physical picture of the acquisition process is as follows.

The large frequency error produces adc voltage on the VCO_ the VCO

responds by increasing its frequency which when mixed with the input

spectrum shifts it toward zero frequency. The frequency error:_ o_i(t)_

decreases. Meer has shown that as long as
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_. (t) is slowly changing. As long as this situation is satisfied, the
l

whole spectrum is being slowly shifted toward zero frequency_ (see

Fig. 2-6).

Before this process can be completed with the acquisition of

the average frequency a component at one of the harmonics of the

difference frequency will be shifted into the passband of the filter

and will be acquired.

If the desired component is the first frequency component

shifted into the filter passband, the loop will acquire the desired

frequency. This occurs when (see Fig.2-7 ).

and

I (2 6)
n

IA_l< 8

otherwise a harmonic of A_ plus the difference frequency may be acquired.

But conditions (2-66) are always satisfied when (.2-63) is satisfied,

that is when we can make the approximation

T
O

sin _ 1w

2P o

when interference is present.

When a frequency component has been acquired, that is

a_CO = _comp.' there is still a voltage on the VCO due to all the compo-

nents outside the noise bandwidth of the filter. This voltage causes

the VCO to change its frequency wh_h shifts the component out of phase

lock. The phase error generates a voltage which tends to shift the
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component back into phase lock. As the phase error is reduced by this

restoring voltage the other frequency components again generate a

voltage which tends to shift the component back out of lock, etc.

The interference then causes a fluctuation in the phase error_ never

allowing it to go to zero.

We have considered the acquisition problem for two limiting

cases of the limiter bandwidth. The first case was very narrow bandj

so that only the desired component of the limiter spectrum was allowed

to enter the feedback loop. In the second case, the entire limiter

spectrum was allowed to enter the feedback loop. These two situations

had the common property that the input waveform could be represented

by a cosine of constant amplitude and a time varying frequency. For

all limiter bandwidths which pass more than one component but not all

of them_ the signal into the feedback loop must be represented in the

form of a cosine with time varying amplitude and frequency.

A(t)cosel(t)

If we rederive our differential equation using a sinusoidal

input with time varying amplitude and frequency we obtain

S_ + H(S) A(t) sin _ = S 81(t )

We can no longer reduce the phase detector output for the

first order loop to that of the constant frequency sinusoid since the

phase detector output contains the amplitude fluctuations.
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For Case 2, we have found that the PLL attempts to acquire

the average frequency of cos (2or + e(t)) provided A_ + e(t) is less

than A_p, the pull in range (2-65). This process continues until a

component of the spectrum is shifted into the passband of the lowpass

filter, _2(S).

Further, we found that when I_I << 8, the relations of

Meer for pull-in range and acquisition time are still valid.

Acquisition when interference is present does not imply that

the output phase error is zero however. In section 2.2 it was

demonstrated that the output phase fluctuates periodically about _ = 0

and in this section a physical description of the process was given.

2.4 Fnase Plane Solutions to the Second Order Phase Lock Loops
with Interference

As we have seen in preceeding sections the analysis of the

second order PLL with or without interference is mathematically

difficult. The nonlinear differential equation can only be solved when

special simplifying assumptions are made. The use of graphical

techniques, however, can be made to yield graphical solutions to the

exact differential equation in the case of no interference. Viterbi, 5

has presented phase plane solutions for the second order loop with

ccastant and linearly varying frequency inputs.

For the case of single carrier interference, or for any other

frequency input, we have two paths open to us. We can resolve the

differential equation for the specific desired input frequency, or we

can approximate the input frequency with a piecewise linear approximation

- 67 -



and utilize Viterbi's results. For the case of single carrier interference,

we have found it convenient to use the second approach.

In this section, we use a piecewise linear approximation

to the input frequency for the case of a desired signal with no modulation

at a frequency co and an interfering signal with no modulation separated
o

in frequency by an amount 8 and with relative amplitude a. With this

piecewise linear approximation we use the phase plane solutions to

the second-order loop with no interference to obtain the output frequency

error.

For large peak-to-peak variations in the input frequency,

expressions for the average change in frequency and for the peak-to-

peak variation in frequency are found as a function of a_ the relative

amplitude.

Figures 2-8 to 2-12show plots of the instantaneous frequency

input for values of a = .9, .8, .7, .6, .5 with 8 as a parameter for

the case of single carrier interference of relative magnitude, a,

and frequency separation from the desired signal, 8.

For large values of a, we can appr_imate the input frequency

by a rectangular wave having the same positive and negative peaks and

the same average value as the exact instantaneous frequency. The

appr_imation for a = .9 is shown in Fig. 2-12.

Viterbi has presented the phase plane solutions for several

types of loop filters for both constant and linearly varying frequency

inputs. The differential equation for the PLL with no interference aad

with constant frequency input is
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+ K F(S) sin _ = f_ (247)

where

is the phase error

K is the loop gain

F(S) is the loop filter

f] is the initial frequency error.

For the second order loop

T I

F(S) : 1 +_-

With this substitution, eq. (2- 67) becomes

$2_ + (KS + T IK) sin _ : S 0 (2-68)

2

letting TIK =mn and K = 2p _n

_here_ in servo terminology,

is the undamped natural frequency
n

p is the damping factor

of the linearized servo loop.

With these substitutions and without operational notation,

eq. (2-68) becomes

d2_ + 2p a_ cos ¢ dd_t +a_ 2
dt 2 n n

T

Normalizing the time t = 2p_
n

we get

sine =0

and defining _ d__ i d_
= dT = 2p _ dt '

n

(2-69)
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+ cos +_l sin = 0
4p2

Now for purposes of plotting, let _ = x, _ = y then y = x and "_ = y.

Equation (2-70) then becomes

y + y cos x + sin x = 0 (2-71)

4p2

Viterbi has presented the trajectories, that is the locus

of points of (x, y) i.e., of (_ $), as the system relaxes from a

large initial phase and frequency error (_o' _o ) to its steady state

condition of phase lock (_f = o, _f = 0), for several values of p.

Figure 2-13 was taken from Viterbi. 5

Consider the case of the seccad order loop initially tracking

the desired frequency, _o' and at time to the interference

a cos (_o + 8)t appears at the input to the loop. We pose the question

what happens to the phase and frequency errors.

The input frequency is of the type shown in Fig.2-13. In

a_
general, the positive peak, C+, is i +-----_' the negative peak, C_, is

a 8. Let us also define the duration of the positive and negative
i - a

2_
peaks as T+ and T_ respectively. Then T+ + T_ = T = _-- , then for time

t < t , (_, _) = (0, 0). At t = t the frequency error jumps from 0
o o

+ T+ the system relaxes along theto 1 + a 8- For time to < t < to

• a 6
trajectory determined by the new initial conditions (0, s"+"a )" At

t = (to + T+)- the coordinates of the system are (_ (to + T+),

_(t ° + T+)) at t = (to + T+) + the frequency error instantaneously drops

from _ to + T+) to _ to + T+)- 1 - a2 " The system coordinates
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T+) +. = + T+ + T_ another frequency jump ofat (to + At t t o

a8

magnitude 1 + a occurs with the phase remaining constant. Continuing

in this fashion the output phase and frequency error can be determined.

In most cases this is a tedious task since given the initial

coordinates (Xl, yl) and the phase plane trajectory at time t I it is

not obvious which coordinates (x2, y2) on the trajectory the system

is at on some later time, t2, since time is not explicitly indicated

on the phase plane. A few methods for determining this are given in

Truxal 6. The most straightforward method is a graphical integration of

2
T2 _ T1 = dT

T 1

with • dx
y=x =m dT

dx
dT =m

Y

Therefore

T2 - "[i =

1
2

x I

_2 - TI' Xl and the trajectory y(x) are known, x2 and Y2 are found

1 at which the area under
by finding the point (x2, y2) on the curve

1 between x I and x2 equals T2 - T 1.

This method is illustrated later.

If the positive and negative jumps of the piecewise linear

input carry the frequency error outside the phase acquisitlcm region

(the region between the two lines A - A in Fig.2-13, the phase
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trajectory is almost periodic. This corresponds to the discussion

in section 2.3 where _o is large and _(t) is periodic. For large

frequency errors, y, the periodic approximation is a good one. In

this situation the phase error increases linearly with time and the

graphical integration can be avoided. This is easily seen from the

differential equation. Rewriting eq. (2-71)

dy cos x sin x
• dx
x 4p2y

(2-74)

for y >> i this becomes

dY = - COS X

dx

also

y = - sin x + c (2-75)

dx

Y = dr

dx dx
dr =--=

y c - sinx

tf xf! dx
dr = .

c - sin x
t x
0 0

From Dwight Integral 436:00 (reference 7),
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2 -1
- = tan

Tdn = tf t o r_/c2 - 1

For y>> l; _- i " Icl

xf x o

c tan_-- 1 2 -1 c tan_-- 1

",I"2 tan / 2
- 1 _c - 1 )jc - 1

1
- <<i
C

Then

xf = c Tdn + x ° (2-76)

Equation (2-76) is valid in the t_me interval from t to t I = t + T+0 0

and c = c+ = 1 +aa 8 and the phase increases from Xo to Xo + c+ T+ in

• a6
tI t 2 +T+ + T . c = c = andthe time interval from to = to - - 1 - a

+ c+ T+ to x + c+ T+ + c T . The netthe phase "increases" from x ° o - -

increase in phase is c+ T+ + c_ T . BRt this is zero since it is

the condition for the average frequency to be o_ . Therefore the net
O

change in phase over a period is zero and hence the output is approximately

periodic with frequency 6.

The average frequency over a period is then

t I t2

+ I _ c+ sin(c+t c+t +Xo_t + I I- - c_ - sin(c_t - c t I + x
_o ¥ t o ¥%1 - o

0

+ c2+)_t

This expression can be simplified to

+" os + (2-77)
o c+%T (x° c+_+)- cosx

Therefore, the phase lock loop shifts the average frequency by an amount

AY=c+c _ os (xo+c2+) - cos x°
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m

Let us keep a constant and see how Af varies with 6 under the constraints

2_

c.T+_ + c T = O and T+ + T
m --

a

Writing c+ and c_ in terms of a and 6 we have, c+ = 1 + a

-a
C =_6.

- 1 - a

6 and

Substituting for c+ and c in the constraint equations and

solving for T+ and T yields

a)

T+ = _ and T =8 - 8

Then, substituting for T+, T_, c+, c_ in the expression for A_ gives

Ay.: %% m os (% + o+m+)- cosx°

=- [ oOSXo 1 cos (x °
a_

1 [c (cos a_ l) sinx sin a_]
= -- os x - -

a_ O 0

If the loop was in phase lock initially x = 0 and therefore
O

x =0
O

__i(cosa_- l)
a_

(2-78)

The peak-to-peak fluctuation as a function of a, neglecting the effect

of the sinusoidal fluctuation is
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peak-to-peak fluctuation =
2a i

2 8 + sin a_ a <_
1 - a

2a I

2_+1 a_g
1 - a

AT as a function of a and the peak-to-peak fluctuations of

the input and output as a function of a are presented in Figs.2-15 and

2-16.

As a_ increases both the integrals

a_ 0

A_ =l J -sin dx + l--

c+ O c_ a_

-sin x dx

2
increase as a .

1

The weighting factors decrease as aj the net result being

that Af increases as a for small a.
w

1

After a reaches the value _ the integral begin to increase

i
much more slowly. Similarly -- approaches its minimum value of 2.

c÷
1

However, _ continues to grow smaller and smaller overtaking the
C

growth of the second integral and eventually swamping it out. At

a " .75 the tradeoff between increasing integrals and decreasing

weighting factors results in a maximum product of about Af = .72 .

Looking at the physical process, the fluctuation superimposed

on the input frequency by the PLL occurs because, when the system is

displaced from phase lock a large frequency error exists. This results

in a linearly increasing phase error. The sinusoidal phase detector
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reacts to this linearly increasing phase error by transforming it into

a s inusoidal fluctuation. This fluctuation is fed into the VC0 and

results in a sinusoidal fluctuation being imposed on the VC0 frequency.

This sinusoidal fluctuation is transferred to the output frequency by

the mixer.

When a is small the frequency error applied to the phase

detector is small, the phase error increases slowly and not much of

a fluctuation is transferred to the outpu_ frequency. As a increases

more of a phase error is accumulated and therefore a larger portion of

the period of a sine wave is imposed on the output frequency. As

a _ l, the phase error accunm_lated by a positive frequency peak of

an input fluctuation that has zero average value is _. When a is

small the contributions from the positive and negative peaks add.

However_ as a increases the finite contributian from the negative
N

peak is swamped out because _ts time duration quickly approaches zero

Somewhere between the sum of the two contributions is aas a_ 1.

maximum.

If we continue to think about the PLL in the same manner it

is easy to see that as a increases the peak-to-peak fluctuation in

frequency will continue to increase until the phase error accumulated

is 2_ at which point the phase detector is putting out its maximum

voltage and the fluctuation imposed on the input frequency has reached

its m_ximumv_lue. As a increases beyond this point the difference

between the peak-to-peak fluctuation of the input and output maintains

a cons tant value.
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We have just examined the frequency error for the case of

a rectangular frequency input that had an average value equal to

the desired signal frequency. For the special case of large peak-

to-peak fluctuations we found the average change in frequency and the

peak-to-peak fluctuation caused by the PLL as a function of a, the

relative amplitude of the interference to the desired frequency. Let

us now actually obtain a plot of the output phase fluctuations for

a specific periodic rectangular frequency input.

If we assume that the positive and negative input frequency

fluctuations carry the frequency error outside the phase acquisition

region we can ignore the second term in the differential equation

dy = _ cos x sin x (2-79)

dx 4p2 Y

which describes the second order loop with constant frequency input.

The solution to (_-79) under this assumption is given by

y= - sinx +c

xf = c Tdn + x° (2-8:L)

For the positive pulse we have

+ sin x
C+ ----YO 0

xf = c+ Td÷ + x o

yf = c+ - sin xf
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For the negative pulse

c = Yl + sin xI

x2 = c_ Td_ + xI

Y2 = c_ - sinx 2

By repeating application of these equations a plot of

output frequency error as a function of time is found. This was

carried out and the resulting plot of output frequency error is

given by Fig. 2-18 for the specific input of Fig. 2-17.

Referring to Fig. 2-18 we first note that the peak-to-peak

fluctuation over a cycle increased by two normalized frequency units.

For any c+ and c_, the peak-to-peak fluctuation will increase but it

will not always be by 2 units over a cycle. Two is the maximnm. The

peak-to-peak fluctuation over several cycles will always increase by

two if c+ and c_ are such that they carry the frequency out of the

phase acquisition region.

Let us examine the average positive peak over T+. We have

y = c+ - sin (c+t + xe)

-y+ c+ _-i T+= + - sin (c+t + Xo)dt
÷ O

1

_+ = c+ + c-_+
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c+T+ is the same for every positive peak. In our case c+T+ is

rad
5.67 •

norm. see.

th
For the n--- cycle the initial phase is

X%n = n(c+T+ + c_T.) n>l
m

if

x =0
0,0

2_ + nCc+T+ + c_T_) = (n + m)Cc+T+ + c_T_)

where n, m, _ are positive integers then the x
-- 0

's repeat after m cycles

and the output is periodic. The condition restated is

or

m(c+m++ c3_ ) = +_ 2_

2_(c+_+ + c_T_) = m (2-82)

The average positive peak over T+ is

- 1

y+ = c+ + c+T---_(cos (x° + c+T+) - cos Xo) (2-83)

where x takes on values
0

x ° = n(c+T+ + c_T.) - % 2_

n, % integer

It has a finite number of values if (2-82) holds, otherwise it can

take on an infinite number of values.
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Maximizing y+ with respect to x ° yields

which results in

c2-.-.-7 - sin (x° + _j+) + sin x : 0

x tan- 1 sin c+T+= + n_
o 1- cos cT++

The maximum average (over T+) positive peak is then

_+imax = c+ + c+lT--_

which reduces to

- sin c_T+)(cos xo(cos c+T+ l) - sin x °

7+ Imax

= c (I cos++- c2+ c2+)I12

t
The exact same expression holds for _"l if

I
e_ and T_ respectively. Imax

c+ and T+ are replaced by

m

The value of y averaged over a positive part of the cycle

depends on the initial value of the phase x o. It takes on its maximum

average value when x ° has the Value specified by eq. (2- 84). This

maximum value is given by (245).

If we average the positive peak over several c[clgs , we find

_ 1 ¢o>N_J+
+ °2 -Kx
n=0 O_n

(-sin x) dx
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where :nCcT +cT) AXo,n + _ _ = n c

If

(°J+ + °3 ) £
- m

(_, m integer)

then the sequence of x 's is not periodic.
o_n

Since there is apparently nothing to favor positive values

of the integral over negative values_ it seems reasonable to assume

that the sum averages to zero•

Note: x does not take on all values between zero and 2_
O

since this would imply that

x = nc - % 2_
0

+x =mc - %2_
O

= (m - n)c - (p- %) 2_

the sequence of x's was periodic of period 2(m - n). This removes a
0

countable infinity of points from the set of possible values for x
O

Formulated more precisely

and
X

. o,n

n=O X
ojn

+ c+T+

- sinx dx = 0

if

Axe0
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where

and

Yn = I if x < nc - _ 2_ < x + Ax

= 0 otherwise

z = 1 if x + _ < nc - _ 2_( x +Ax + _n

= 0 otherwise

M M

ZN1 = _ Yn and N2 = zn

0 0

and

N 1
R =

N 2
and positive integer

The average frequency of the output over a complete cycle

of the input is

T x + c+T+
_'_ O

ydt=7 ?, cq
0 _ x

0

+ c+T+ + c TX O _ .

+ cT + im "
- - c_ ] - sinx dx

X ° + c+W+

c+T+ + c T i (i____ i COS X 0
- - +_ c+ - T) cos(x° + c2+) c+ TT

+

cos (x° + c+_++ c_ )
c T

The first term represents tl_ average frequency of the input, the

others represent the effect of the PLLon the average frequency.

As in the previous discussion the average frequency over a

cycle depends on the value of x
O"

- 82 -



If the x 's are periodic, the average value over several
o_n

cycles depends on the periodicity.

If the x 's are not periodic we argued that it is reasonable
o_n

to assume that

N

lim --

N-_ _

n=O

x
%n1

x
o_n

+ c+T+
- sin x dx

x + c+T+ + c T
1 - °3n " -

+-- ]C_ T

X%n + d+T+

- sin x dx

_0

and therefore that the average over several cycles is

which is the average frequency of the input.

c+T+ + c_T

T ÷T
+

In the two preceding discussions we discussed the reaction of

the PLL to inputs whose frequency excursions carried the loop out of

the phase acquisition region which allowed us to neglect a term in the

differential equation. We now compute the output phase error to a

rectangular frequency input whose average value is non-zero and whose

positive excursions in frequency carry the loop outside the phase

acquisition region but whose negative excursions do not.

The purpose of this discussim is to illustrate the use of the

phase plane plot in computing output phase errors and to find the

shape of the output pulse for a particular input frequency. The
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instantaneous frequency of the input is chosen to be as illustrated

in Fig. 2-19. It is normalized for a loop with high frequency gain

m = .O1, midband gain, K = l, and 3 db loop bandwidth of 30 Hz and

damping factor p = .707.

The normalized input frequency plot is shown in Fig. 2-20.

This frequency input has a positive pulse of 583.09 cycles/normalized

sec and no negative pulse.

For the duration of the positive pulse we can make the

approximation that the nonlinear term in the differential equation

(eq. 2-79), describing the loop is negligible. The solutions valid

for the duration of the positive pulse are then given by (2-80) and

(2-81)

y=- sinx+c (2-8o)

x =c(t- to),= (2-81)0

As before we use equations (2-80) and (2-81) to relate phase

and frequency errors just after the pulse appears to those just before

it passes. To find the reaction of the loop for the period just after

the pulse passes to just before the next pulse strikes we use the phase

plane plot, Fig. 2-21, and the graphical integration technique described

on page 71 -

On the following pages, we calculate the output phase and

frequency errors for several cycles of the input frequency of Figs.

2-19and 2-20.
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We assume the loop is initially in phase lock when the

frequency input of Fig. 2-18 is applied. Then

(Xo, yo) = (% 0), and the pulse of amplitude 583.09 strikes_ then using

eqs. (2- 80) and (2_1),

c = 583.09 nor_lized frequency units

xf = c Tdn + x °

xf = (583.09)(2.2 × i0 "3) + 0

= i.28 radians

yf = c - sin xf = 583.09 - .96

(xf, yf) = (1.28, 583.09 - .96)

after the pulse passes we have

then 1.28 tad

x I = xf = 1.28 radian

Yl = Yf " c = -.96

radian = 0785 radian
at _ phase unit* " phase unit

is 16_3 phase units on the phase plane plot (see Fig.2-20 ). The

phase and frequency error (Xl_ yl) just after the pulse has passed

are known.

The system will now move toward the origin of the phase plane

along the trajectory passing through (xl, yl ) until it is disturbed by

the pulse T - Td = .1 sec later. The system coordinates at the time

the pulse strikes for the second time can be determined from a graphical

integration of L
r

A phase unit is the s_llest division on the phase plane plot

(see Fig. 2-20 ).
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T x 2

Td x I

This is carried out in Fig. 2-21 on which it is seen that

the phase error decreases by 1.22 phase units and the frequency

error does not change a significant amount. Therefore,

since

(x2, y2) --(i.18, -.96)

Y2 = (16.3 - 1"22)('0785 phaseradianunit) - 1.18 radian

As the pulse strikes for the second time

i.e.,

(x2, Y2)_ (Xo, Yo)

(1.18, -.96)-_ (1.18, 583.09, -.96)

The new c is

then

and

c = Yo + sin x ° = 583.09 -.96 +.96 = 583.09

= (583.09) 2.2 × i0 -3 + 1.18 = 2.46 radiansxf = c Tdn + x °

yf = c - sin xf = 583.09 - .63

After the pulse passes the new system coordinates, (Xl, yl ), are
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(Xl, yl) = (2.46 radians = 31.34 phase unit, -.63)

proceeding exactly as before using Fig.2-22 we get

2.39 radons

The pulse strikes for the third time changing

(x2, y2) to (2.39, 5.83.09 -.75)

The ne_ c is

c = Yo + sin x° = 5.83.09 --75 +.68 = 583.02

then

xf = (583.o2) 2.2 x 1o-3 + 2.39

= 3.67 ra_

= 3.67- _ -53

yf = c - sin xf = 583.02 - .51 = 582.51

after the pulse has passed

(xI, yl) : (.53 + _, -.58)

Performing the graphical integration, Fig.2-23 yields

(x2, y2) = (_ + ._7!,-.59)
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The pulse strikes for the fourth time changing

(x2' Y2 )

(xo, Yo)

to (_ + .471, 583.09 - .59)

= (_ + .471, 582.5)

The new c is

c = Yo + sin x° = 582.5 - .45

c = 582.o5

Then

xf : (582.05) 2.2 × 10-3 + _ + .471

3_
= _ + 1.75 = 7 + .179

yf : c _ sin xf : 582.o5 + .98 : 583.o3

(xf, yf) = (_ + .179, 583.03)

after the pulse passes the coordinates are

(xI, Yl ) = (_ + .179, .06)

The graphical integration is performed in Fig. 2-24 to yield

(x2, y2) : (_ + .157,_ .o6)

The pulse strikes for the fifth time changing (x2, y2) to (Xo, yo).

(Xo' Yo ) = (_ + _157' 583.03)
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The new c is

c = Yo + sin x° = 583.03 - .99 = 582.04

= 3_
xf 582.04 (2.2 × 10-3 ) +_ + .157

= 3___ +1.44
2

yf = c - sin xf = 582.04 + .13 = 582.17

After the pulse passes we are left with

(Xl,Yl) = (_ + I.44, - .92)

Frem Fig. 2-.25

(x2, y2) • (_ + 1.35, - .81)

The pulse strikes for the sixth time changing (x2, y2) into (Xo, yo)

(xo, Yo ) = (_ + 1.35, 582.28)

The new c is

c = Yo + sin x° = 582.28 - .22 = 582.06

3 _

xf : 582.06 (2.2 X 10-3 ) + _- + 1.35 = 2_ + 1.06

yf = c - sin xf = 581.19
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As the pulse passes the system coordinates become

(xI, yl ) = (.87, - 1.90)

The resulting output frequency error is plotted in Fig. 2-26 .
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2.5 APEm_IX A

Series Solution to First Order Loop with Carrier and Interference Present

At the Input

The differential equation is (2-9)

CO

+ K in _o + (cos _o ) = 6 ), (-i)n + 1

n=l

n
a cos n6t +e -

o

Assume a solution of the form(_-10)

QO

= _ An cos (n6t + C_n)

n=l

Then

Co

= - i An n6 sin (n6t + Gn)

1

(A-l)

Therefore (2- 9) becomes

_o

- A n6 sin (n6t + _ ) + K sin ¢o on n

n
oo oo

+ K cos ¢o _ An _os (n6t +_n ) = 6 _ (-I)n + 1

n=l n=l

n
a cos n6t (A-2)

Immediately we obtain

+ell -CO=0K sin o o
(A-B)
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I I¢o = sin'l _ (_o (A-4)
K

Expanding sin (nSt + OCn) and cos (nSt + _n) and collecting terms in

(A-2) yields

co

_ (-A n8 sin n6t cos G - A n6 sin (_ cos n6t + K cos _o A cos nSt cos (zn n n n - n n
1

co

_-_ n

. An K cos ¢o sin n6t sin Gn ) = _ 6('l)n + 1 a cos n6t (A-5)

1

Equating the coefficient of sin n6t to zero and equating the coefficients

of the cos n6t terms gives

-A n6 cos (_ - A K cos _ sin
n n n -o n

: 0 (A-6)

+B_cos _ A-An n6 sin (zn o n
cos 6_ = 6(-1) n + i an (A-7)

n

Equation (A-6) gives

= tan-i -n6

n K cos _o
(A-8)

Equation (A-7) gives

A

n

8(_.l)n + i an

-n8 sin c_n +K cos _o cos c_n

_ 6an._(-.l)n+ 1

cos (xn [K cos _o - n8 tan _nJ
(A-9)
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But from equation (A-8)

Therefore

tan (_ = _ -n8

n K cos''_or
(A-10)

COS 0_
n

K cos _o

_(n8)2 +K 2 c°s 2 _o

Substituting (A-10) and (A-11) into (A-9) and simplifying gives

(A-ll)

A : (-1)n + 1 8an

_( _o)_n n8)2 + (K cos
(A-_)
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2.6 _D_B

Series Solution to the Second Order Loop with Carrier and Interference

Present at the Input

The differential equation is (2- 27).

+K _ +_ T¢:_ (2-27)

In which e is given by (2- 28).

co

1

(-1)n n an sin nSt (2- 28)

Assume a solution of the form (2-29).

CO

n n_o L A sin (n6t + _ )

1

(2-29)

Then we have

CO

_'= L An n8 cos (n6t +an )

i

(B-l)

"_ = _- An (n8)2 sin (nSt + _n )

1

Substituting (2-28), (2-29)., (B-I), and (B-2) in (2-27) yields

(B-2)
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co

L" A (nS) sin (nSt +(% ) +) KA n8 cos (nSt +(% )n n ,, n n
i i

co

+KT +LKT Ao n
1

sin (n6t +_n) =Z 62n('l)n an sin n6t

1

(m3)

Expanding sin (nSt + _n) and cos(n6t + _n) gives

An(n 6)2 sin n6t cos (_n An(n 8)2- - cos n6t sin _n +K T _O

- K A n6 sin n6t sin c_ + KA n6 cos n6t cos (_
n n n n

+ K T A sin n6t cos C_ + K T A cos nSt sin (_
n n n n

n
= 62 (-i)n n a sin n6t (m4)

Combining terms and equating coefficients of sin n6t and cos n6t

equal to zero gives

¢o = 0 (mr)

An (n6)2 n6 sin c_ + K T A cos (% = (-i)n 62 n- cos _n - K An n n n na

(m6)

-An (n6)2 sin _n + K An n6 cos _n + K T An sin (_n = 0 (B-7)

From (B-7) we have

(% = tan-i K n 6 (B-8)
n 2 62n -KT

2 82n -KT

cos _n _K 2 n_ 82 + (n2 82 K T. )2
(B-9)
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From (B-6)

iii _(_l)_n62 n an .......

:_- 2. 6" %_ _n IkAn (K T - (nS) K n tan cos
(B°l_)

Substituting (B-8) and (B-9) in (B-lO) gives

A
n

(_l)n + i n 82 an

_(K n 8)2+ (n2 82 - K T)2 _1/2

= In+l n(-,,I, n 6 a

-7)
(B-11)
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